Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23.693
Filter
1.
Transpl Int ; 37: 12556, 2024.
Article in English | MEDLINE | ID: mdl-38650846

ABSTRACT

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Subject(s)
Disulfiram , Graft Rejection , Lung Transplantation , Macrophages , Rats, Inbred F344 , Rats, Inbred Lew , Animals , Lung Transplantation/adverse effects , Graft Rejection/prevention & control , Graft Rejection/immunology , Male , Disulfiram/pharmacology , Disulfiram/therapeutic use , Rats , Macrophages/drug effects , Macrophages/metabolism , Allografts , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Chemokine CCL2/metabolism , Lung/pathology , Lung/drug effects
2.
Int J Mol Sci ; 25(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38396887

ABSTRACT

Kidney transplantation is preferred for end-stage renal disease. The current gold standard for kidney preservation is static cold storage (SCS) at 4 °C. However, SCS contributes to renal graft damage through ischemia-reperfusion injury (IRI). We previously reported renal graft protection after SCS with a hydrogen sulfide donor, sodium thiosulfate (STS), at 4 °C. Therefore, this study aims to investigate whether SCS at 10 °C with STS and Hemopure (blood substitute), will provide similar protection. Using in vitro model of IRI, we subjected rat renal proximal tubular epithelial cells to hypoxia-reoxygenation for 24 h at 10 °C with or without STS and measured cell viability. In vivo, we preserved 36 donor kidneys of Lewis rats for 24 h in a preservation solution at 10 °C supplemented with STS, Hemopure, or both followed by transplantation. Tissue damage and recipient graft function parameters, including serum creatinine, blood urea nitrogen, urine osmolality, and glomerular filtration rate (GFR), were evaluated. STS-treated proximal tubular epithelial cells exhibited enhanced viability at 10 °C compared with untreated control cells (p < 0.05). Also, STS and Hemopure improved renal graft function compared with control grafts (p < 0.05) in the early time period after the transplant, but long-term function did not reach significance. Overall, renal graft preservation at 10 °C with STS and Hemopure supplementation has the potential to enhance graft function and reduce kidney damage, suggesting a novel approach to reducing IRI and post-transplant complications.


Subject(s)
Hemoglobins , Kidney Transplantation , Reperfusion Injury , Thiosulfates , Rats , Animals , Organ Preservation , Graft Survival , Rats, Inbred Lew , Kidney , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
3.
Ann Plast Surg ; 92(3): 327-334, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38394271

ABSTRACT

BACKGROUND: Soft tissue defects with exposed avascular structures require reconstruction with well-vascularized tissues. Extensive research is ongoing to explore tissue engineered products that provide durable coverage. However, there is a lack of controlled and affordable testbeds in the preclinical setting to reflect this challenging clinical scenario. We aimed to address this gap in the literature and develop a feasible and easily reproducible model in rodents that reflects an avascular structure in the wound bed. METHODS: We created 20 × 20 mm full thickness wounds on the dorsal skin of Lewis rats and secured 0.5-mm-thick silicone sheets of varying sizes to the wound bed. A 3D-printed wound frame was designed to isolate the wound environment. Skin graft and free flap survival along with exposure of the underlying silicone was assessed. Rats were followed for 4 weeks with weekly dressing changes and photography. Samples were retrieved at the endpoint for tissue viability and histologic analysis. RESULTS: The total wound surface area was constant throughout the duration of the experiment in all groups and the wound frames were well tolerated. The portion of the skin graft without underlying silicone demonstrated integration with the underlying fascia and a histologically intact epidermis. Gradual necrosis of the portion of the skin graft overlying the silicone sheet was observed with varying sizes of the silicone sheet. When the size of the silicone sheet was reduced from 50% of the wound surface area, the portion surviving over the silicone sheet increased at the 4-week timepoint. The free flap provided complete coverage over the silicone sheet. CONCLUSION: We developed a novel model of rodent wound healing to maintain the same wound size and isolate the wound environment for up to 4 weeks. This model is clinically relevant to a complex wound with an avascular structure in the wound bed. Skin grafts failed to completely cover increasing sizes of the avascular structure, whereas the free flap was able to provide viable coverage. This cost-effective model will establish an easily reproducible platform to evaluate more complex bioengineered wound coverage solutions.


Subject(s)
Rodentia , Wound Healing , Rats , Animals , Rats, Inbred Lew , Skin Transplantation , Silicones , Printing, Three-Dimensional
4.
J Biomed Mater Res B Appl Biomater ; 112(2): e35374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38359170

ABSTRACT

Hydroxyapatite (HA)-based materials are widely used as bone substitutes due to their inherent biocompatibility, osteoconductivity, and bio-absorption properties. However, HA scaffolds lack compressive strength when compared to autograft bone. It has been shown that the fluoridated form of HA, fluorapatite (FA), can be sintered to obtain this desired strength as well as slower degradation properties. Also, FA surfaces have been previously shown to promote stem cell differentiation toward an osteogenic lineage. Thus, it was hypothesized that FA, with and without stromal vascular fraction (SVF), would guide bone healing to an equal or better extent than the clinical gold standard. The regenerative potentials of these scaffolds were tested in 32 Lewis rats in a femoral condylar defect model with untreated (negative), isograft (positive), and commercial HA as controls. Animals were survived for 12 weeks post-implantation. A semi-quantitative micro-CT analysis was developed to quantify the percent new bone formation within the defects. Our model showed significantly higher (p < .05) new bone depositions in all apatite groups compared to the autograft group. Overall, the FA group had the most significant new bone deposition, while the differences between HA, FA, and FA + SVF were insignificant (p > .05). Histological observations supported the micro-CT findings and highlighted the presence of healthy bone tissues without interposing capsules or intense immune responses for FA groups. Most importantly, the regenerating bone tissue within the FA + SVF scaffolds resembled the architecture of the surrounding trabecular bone, showing intertrabecular spaces, while the FA group presented a denser cortical bone-like architecture. Also, a lower density of cells was observed near FA granules compared to HA surfaces, suggesting a reduced immune response. This first in vivo rat study supported the tested hypothesis, illustrating the utility of FA as a bone scaffold material.


Subject(s)
Apatites , Durapatite , Rats , Animals , Autografts , Rats, Inbred Lew , Apatites/pharmacology , Durapatite/pharmacology , Bone Regeneration , Osteogenesis , Tissue Scaffolds
5.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338887

ABSTRACT

Vascularized composite allotransplantation (VCA) represents a promising reconstructive solution primarily conducted to improve quality of life. However, tissue damage caused by cold-ischemia (CI) storage prior to transplant represents a major factor limiting widespread application. This study investigates the addition of the novel free radical scavenger PrC-210 to UW Organ Preservation Solution (UW Solution) to suppress CI-induced skeletal muscle injury in a rat hind limb amputation model. Lewis rats received systemic perfusion of UW solution +/- PrC-210 (0 mM control, 10 mM, 20 mM, 30 mM, or 40 mM), followed by bilateral transfemoral amputation. Limbs were stored in 40 mL of the same perfusate at 4 °C for 48 h. Muscle punch biopsies were taken at set times over the 48 h cold-storage period and analyzed for caspase-3,7 activity, cytochrome C levels, and qualitative histology. A single 15 s perfusion of PrC-210-containing UW Solution conferred a dose-dependent reduction in CI-induced muscle cell death over 48 h. In the presence of PrC-210, muscle cell mitochondrial cytochrome C release was equivalent to 0 h controls, with profound reductions in the caspase-3,7 apoptotic marker that correlated with limb histology. PrC-210 conferred complete prevention of ROS-induced mitochondrial lysis in vitro, as measured by cytochrome C release. We conclude that the addition of 30 mM PrC210 to UW Solution conferred the most consistent reduction in CI limb damage, and it warrants further investigation for clinical application in the VCA setting.


Subject(s)
Composite Tissue Allografts , Diamines , Organ Preservation Solutions , Reperfusion Injury , Sulfhydryl Compounds , Rats , Animals , Free Radical Scavengers , Caspase 3 , Composite Tissue Allografts/pathology , Cytochromes c , Quality of Life , Rats, Inbred Lew , Glutathione/pharmacology , Allopurinol/pharmacology , Insulin/pharmacology , Ischemia , Organ Preservation , Cold Temperature , Reperfusion Injury/pathology , Raffinose , Adenosine
6.
Stem Cell Res Ther ; 15(1): 33, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38321490

ABSTRACT

BACKGROUND: There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs derived from undifferentiated hMSC (Naïve-EVs) and hMSC during the early stage of osteogenesis (Osteo-EVs). A further aim was to assess the osteoinductive potential of Osteo-EVs for bone regeneration in rat calvarial defects. METHODS: EVs from both groups were isolated using size-exclusion chromatography and characterized by size distribution, morphology, flow cytometry analysis and proteome profiling. The effects of EVs (10 µg/ml) on the proliferation, migration, and osteogenic differentiation of cultured hMSC were evaluated. Osteo-EVs (50 µg) or serum-free medium (SFM, control) were combined with collagen membrane scaffold (MEM) to repair critical-sized calvarial bone defects in male Lewis rats and the efficacy was assessed using µCT, histology and histomorphometry. RESULTS: Although Osteo- and Naïve-EVs have similar characteristics, proteomic analysis revealed an enrichment of bone-related proteins in Osteo-EVs. Both groups enhance cultured hMSC proliferation and migration, but Osteo-EVs demonstrate greater efficacy in promoting in vitro osteogenic differentiation, as evidenced by increased expression of osteogenesis-related genes, and higher calcium deposition. In rat calvarial defects, MEM with Osteo-EVs led to greater and more consistent bone regeneration than MEM loaded with SFM. CONCLUSIONS: This study discloses differences in the protein profile and functional effects of EVs obtained from naïve hMSC and hMSC during the early stage of osteogenesis, using different methods. The significant protein profile and cellular function of EVs derived from hMSC during the early stage of osteogenesis were further verified by a calvarial bone defect model, emphasizing the importance of using differentiated MSC to produce EVs for bone therapeutics.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Rats , Male , Animals , Osteogenesis/genetics , Proteomics , Mesenchymal Stem Cells/metabolism , Rats, Inbred Lew , Bone Regeneration/physiology , Cell Differentiation , Extracellular Vesicles/metabolism
7.
Exp Lung Res ; 50(1): 15-24, 2024.
Article in English | MEDLINE | ID: mdl-38317565

ABSTRACT

Background: Lung ischemia-reperfusion injury (LIRI) is among the complications observed after lung transplantation and is associated with morbidity and mortality. Preconditioning of the donor lung before organ retrieval may improve organ quality after transplantation. We investigated whether preconditioning with metformin (Met) ameliorates LIRI after lung transplantation. Methods: Twenty Lewis rats were randomly divided into the sham, LIRI, and Met groups. The rats in the LIRI and Met groups received saline and Met, respectively, via oral gavage. Subsequently, a donor lung was harvested and kept in cold storage for 8 h. The LIRI and Met groups then underwent left lung transplantation. After 2 h of reperfusion, serum and transplanted lung tissues were examined. Results: The partial pressure of oxygen (PaO2) was greater in the Met group than in the LIRI group. In the Met group, wet-to-dry (W/D) weight ratios, inflammatory factor levels, oxidative stress levels and apoptosis levels were notably decreased. Conclusions: Met protects against ischemia-reperfusion injury after lung transplantation in rats, and its therapeutic effect is associated with its anti-inflammatory, antioxidative, and antiapoptotic properties.


Subject(s)
Lung Injury , Lung Transplantation , Reperfusion Injury , Rats , Animals , Rats, Sprague-Dawley , Rats, Inbred Lew , Lung , Lung Transplantation/adverse effects , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control
8.
Sci Rep ; 14(1): 4605, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38409241

ABSTRACT

Intestinal adaptation does not necessarily recover absorptive capacity in short bowel syndrome (SBS), sometimes resulting in intestinal failure-associated liver disease (IFALD). Additionally, its therapeutic options remain limited. Polyamines (spermidine and spermine) are known as one of the autophagy inducers and play important roles in promoting the weaning process; however, their impact on intestinal adaptation is unknown. The aim of this study was to investigate the impact of polyamines ingestion on adaptation and hepatic lipid metabolism in SBS. We performed resection of two-thirds of the small intestine in male Lewis rats as an SBS model. They were allocated into three groups and fed different polyamine content diets (0%, 0.01%, 0.1%) for 30 days. Polyamines were confirmed to distribute to remnant intestine, whole blood, and liver. Villous height and number of Ki-67-positive cells in the crypt area increased with the high polyamine diet. Polyamines increased secretory IgA and mucin content in feces, and enhanced tissue Claudin-3 expression. In contrast, polyamines augmented albumin synthesis, mitochondrial DNA copy number, and ATP storage in the liver. Moreover, polyamines promoted autophagy flux and activated AMP-activated protein kinase with suppression of lipogenic gene expression. Polyamines ingestion may provide a new therapeutic option for SBS with IFALD.


Subject(s)
Short Bowel Syndrome , Rats , Animals , Male , Short Bowel Syndrome/metabolism , Polyamines/metabolism , Rats, Sprague-Dawley , Rats, Inbred Lew , Intestine, Small/metabolism , Diet , Models, Theoretical , Intestinal Mucosa/metabolism
9.
mBio ; 15(3): e0330223, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38376248

ABSTRACT

Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model." However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite's replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.


Subject(s)
Toxoplasma , Animals , Humans , Rats , Adenosine Triphosphatases , Immunity, Innate , Inflammasomes , NLR Proteins , Protozoan Proteins/metabolism , Rats, Inbred Lew , Toxoplasma/metabolism , Ubiquitin-Protein Ligases
10.
Biomaterials ; 306: 122476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266349

ABSTRACT

Acute rejection is a life-threatening complication after liver transplantation. Immunosuppressants such as tacrolimus are used to inhibit acute rejection of liver grafts in clinic. However, inefficient intragraft accumulation may reduce the therapeutic outcomes of tacrolimus. Here, an enzyme-responsive nanoparticle is developed to selectively enhance the accumulation of tacrolimus in liver allograft through enzyme-induced aggregation to refine immunotherapeutic efficacy of tacrolimus. The nanoparticles are composed of amphiphilic tacrolimus prodrugs synthesized by covalently conjugating tacrolimus and matrix metalloproteinase 9 (MMP9)-cleavable peptide-containing methoxy poly (ethylene glycol) to poly (l-glutamic acid). Upon exposure to MMP9, which is overexpressed in rejected liver allografts, the nanoparticles undergo a morphological transition from spherical micellar nanoparticles to microscale aggregate-like scaffolds. Intravenous administration of MMP9-responsive nanoparticles into a rat model of acute liver graft rejection results in enhanced nanoparticle accumulation in allograft as compared to nonresponsive nanoparticles. Consequently, the MMP9-responsive nanoparticles significantly inhibit intragraft inflammatory cell infiltration and proliferation, maintain intragraft immunosuppressive environment, alleviate graft damage, improve liver allograft function, abate weight loss and prolong recipient survival. This work proves that morphology-switchable enzyme-responsive nanoparticles represent an innovative strategy for selectively enhancing intragraft accumulation of immunosuppressive agents to improve treatment of liver allograft rejection.


Subject(s)
Nanoparticles , Tacrolimus , Rats , Animals , Tacrolimus/pharmacology , Matrix Metalloproteinase 9 , Graft Rejection/drug therapy , Graft Rejection/prevention & control , Rats, Inbred Lew , Immunosuppressive Agents/therapeutic use , Liver , Allografts , Graft Survival
11.
Int Heart J ; 65(1): 109-118, 2024.
Article in English | MEDLINE | ID: mdl-38296563

ABSTRACT

Ivabradine (IVA) reduces heart rate by inhibiting hyperpolarization-activated cyclic nucleotide-gated channels (HCNs), which play a role in the promotion of pacemaker activity in cardiac sinoatrial node cells. HCNs are highly expressed in neural and myocardial tissues and are involved in the modulation of inflammatory neuropathic pain. However, whether IVA exerts any effect on myocardial inflammation in the pathogenesis of heart failure is unclear. We employed single-cell RNA sequencing (scRNA-seq) in porcine cardiac myosin-induced experimental autoimmune myocarditis rat model to determine the effects and mechanisms of IVA. Lewis rats (n = 32) were randomly divided into the normal, control, high-dose-IVA, and low-dose-IVA groups. Heart rate and blood pressure were measured on days 0 and 21, respectively. Echocardiography was performed on day 22, and inflammation of the myocardium was evaluated via histopathological examination. Western blot was employed to detect the expression of HCN1-4, MinK-related protein 1 (MiRP1), matrix metalloproteinase 2 (MMP-2), MMP-9, and transforming growth factor-ß (TGF-ß). Furthermore, enzyme-linked immunosorbent assay was performed to measure serum IL-1, IL-6, and TNF-α. The relative mRNA levels of collagen I, collagen III, and α-smooth muscle actin (α-SMA) were determined via qRT-PCR. We found that IVA reduced the total number of cells infiltrated into the myocardium, particularly in the subset of fibroblasts, endocardia, and monocytes. IVA administration ameliorated cardiac inflammation and reduced collagen production. Results of the echocardiography indicated that left ventricular internal diameter at end-systole LVIDs increased whereas left ventricular ejection fraction and left ventricular fractional shortening decreased in the control group. IVA improved cardiac performance. The expression of HCN4 and MiRP1 protein and the level of serum IL-1, IL-6, and TNF-α were decreased by IVA treatment. In conclusion, HCNs and the helper proteins were increased in the profile of myocardial inflammation. HCNs may be involved in the regulation of myocardial inflammation by inhibiting immune cell infiltration. Our findings can contribute to the development of IVA-based combination therapies for the future treatment of cardiac inflammation and heart failure.


Subject(s)
Heart Failure , Heart Injuries , Myocarditis , Rats , Animals , Swine , Ivabradine/pharmacology , Ivabradine/therapeutic use , Myocarditis/metabolism , Matrix Metalloproteinase 2/metabolism , Stroke Volume , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ventricular Function, Left , Rats, Inbred Lew , Myocardium/pathology , Heart Failure/metabolism , Inflammation/metabolism , Heart Injuries/metabolism , Collagen/metabolism , Interleukin-1/metabolism
12.
Transpl Immunol ; 82: 101984, 2024 02.
Article in English | MEDLINE | ID: mdl-38184210

ABSTRACT

PURPOSE: The tissue inhibitor of metalloproteinase 2 (TIMP2), a natural inhibitor of matrix metalloproteinase (MMP), regulates inflammation, fibrosis, and cell proliferation. Chronic renal allograft dysfunction (CRAD) is a primary factor affecting the long-term survival of renal allografts. We assessed whether up-regulation of TIMP2 expression may affect the ERK1/2-NF-κB signaling pathway and CRAD development. METHODS: Lewis rats received orthotopic F344 kidney allografts to establish the classical CRAD model. The treatment group was injected with a lentivirus encoding a TIMP2-targeting small hairpin (sh)RNA (LTS) at 5 × 108 TU/ml monthly after kidney transplantation. A second CRAD group was injected with a lentivirus TIMP2-control vector (LTC). After 12 weeks, blood, urine, and kidney tissue were harvested to evaluate renal function and pathological examinations. Hematoxylin and eosin staining, Masson staining, and Periodic acid-Schiff staining were performed for renal histopathological evaluation according to the Banff criteria. TIMP2, phospho (p)-ERK1/2, p-p65 (NF-κB) expression levels were measured via immunohistochemical and Western blot analyses. RESULTS: Compared to the F344 and Lewis control groups, the expression of TIMP2, p-ERK1/2, and p-p65 were significantly higher in the CRAD and CRAD+LTC renal tissues (p < 0.05). There were also increased levels of serum creatinine, nitrogen, and 24 h urinary protein in these two groups (p < 0.05). Typical histopathological changes of CRAD were observed in the CRAD and CRAD+LTC groups. Administration of LTS effectively decreased the expression of TIMP2, p-ERK1/2, and p-P65, and reduced interstitial fibrosis and macrophage infiltration in the treatment group (p < 0.05). Additionally, MCP1 and ICAM-1, which are downstream cytokines of the NF-κB pathway, were also inhibited in the renal rat kidney from the LTS group (p < 0.05). Furthermore, renal function was well preserved in the LTS group compared to the CRAD group and CRAD+LTC group. CONCLUSION: A decrease of TIMP2 can alleviate the progression of inflammation in CRAD via inhibition of the ERK1/2-NF-κB signaling pathway.


Subject(s)
Kidney Transplantation , NF-kappa B , Animals , Rats , Allografts/metabolism , Fibrosis , Inflammation , MAP Kinase Signaling System , NF-kappa B/metabolism , Rats, Inbred F344 , Rats, Inbred Lew , Signal Transduction , Tissue Inhibitor of Metalloproteinase-2/genetics , Tissue Inhibitor of Metalloproteinase-2/metabolism
13.
Plast Reconstr Surg ; 153(1): 79e-90e, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37014960

ABSTRACT

BACKGROUND: Adipose stem cells (ASCs) are a promising cell-based immunotherapy because of their minimally invasive harvest, high yield, and immunomodulatory capacity. In this study, the authors investigated the effects of local versus systemic ASC delivery on vascularized composite allotransplant survival and alloimmune regulation. METHODS: Lewis rats received hind-limb transplants from Brown Norway rats and were administered donor-derived ASCs (passage 3 or 4, 1 × 10 6 cells/rat) locally in the allograft, or contralateral limb, or systemically at postoperative day 1. Recipients were treated intraperitoneally with rabbit anti-rat lymphocyte serum on postoperative days 1 and 4 and daily tacrolimus for 21 days. Limb allografts were monitored for clinical signs of rejection. Donor cell chimerism, immune cell differentiation, and cytokine expression in recipient lymphoid organs were measured by flow cytometric analysis. The immunomodulation function of ASCs was tested by mixed lymphocyte reaction assay and ASC stimulation studies. RESULTS: Local-ASC-treated recipients achieved significant prolonged allograft survival (85.7% survived >130 days; n = 6) compared with systemic-ASC and contralateral-ASC groups. Secondary donor skin allografts transplanted to the local-ASC long-term surviving recipients accepted permanently without additional immunosuppression. The increases in donor cell chimerism and regulatory T-cells were evident in blood and draining lymph nodes of the local-ASC group. Moreover, mixed lymphocyte reaction showed that ASCs inhibited donor-specific T-cell proliferation independent of direct ASC-T-cell contact. ASCs up-regulated antiinflammatory molecules in response to cytokine stimulation in vitro. CONCLUSION: Local delivery of ASCs promoted long-term survival and modulated alloimmune responses in a full major histocompatibility complex-mismatched vascularized composite allotransplantation model and was more effective than systemic administration. CLINICAL RELEVANCE STATEMENT: ASCs are a readily available and abundant source of therapeutic cells that could decrease the amount of systemic immunosuppression required to maintain limb and face allografts.


Subject(s)
Vascularized Composite Allotransplantation , Rats , Animals , Rabbits , Rats, Inbred Lew , Rats, Inbred BN , Hindlimb/surgery , Allografts , Cytokines , Stem Cells , Graft Survival , Immunosuppressive Agents
14.
J Plast Reconstr Aesthet Surg ; 88: 57-65, 2024 01.
Article in English | MEDLINE | ID: mdl-37952438

ABSTRACT

BACKGROUND: The hypothesis of this study was that trigeminal nerve stimulation (TNS) or peripheral nerve stimulation (PNS) could improve functional outcomes of peripheral nerve injury in a rat forelimb model when compared to control rats not receiving electrical stimulation (ES). While PNS is known to improve outcomes after nerve surgery, the role of TNS has not been explored. METHODS: Lewis rats were trained to perform a reach and grasp task before receiving a 2 mm gap repair of the ulnar and median nerves and randomized into four treatment groups: (1) sham injury, (2) nerve injury with sham ES, (3) nerve injury with PNS, and (4) nerve injury with TNS. Functional motor (median pull force and percent success in motor task) and sensory metrics (forelimb paw withdrawal thresholds) were collected both pre-injury and throughout rehabilitation. Nerves stained using Gomori's trichrome were assessed quantitatively and qualitatively. RESULTS: The sham ES group did not recover their pre-injury baseline functional outcomes. In contrast, the TNS and PNS groups fully recovered following injury, with no difference in functional outcomes between the pre-injury baseline and the final week of rehabilitation (P > 0.05, all). Histomorphology results demonstrated no quantitative difference, but qualitative differences in architecture were evident. CONCLUSIONS: Electrical stimulation of the trigeminal nerve or the injured nerve improved the functional outcomes of nerve regeneration in rodents. Histomorphology results of nerves from the TNS group support the proposed central mechanisms. This is an important step in translating this therapy as an adjunct, non-invasive treatment for high, mixed nerve injuries in humans.


Subject(s)
Peripheral Nerve Injuries , Rodentia , Animals , Rats , Electric Stimulation/methods , Forelimb , Median Nerve , Nerve Regeneration/physiology , Peripheral Nerve Injuries/surgery , Rats, Inbred Lew , Recovery of Function/physiology , Trigeminal Nerve
15.
J Burn Care Res ; 45(1): 234-241, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37801462

ABSTRACT

Skin substitutes including allografts remain a standard therapeutic approach to promote healing of both acute and chronic large wounds. However, none have resulted in the regrowth of lost and damaged tissues and scarless wound healing. Here, we demonstrate skin allograft chimerism and repair through the mobilization of endogenous bone marrow-derived stem and immune cells in rats and swine. We show that pharmacological mobilization of bone marrow stem cells and immune cells into the circulation promotes host repopulation of skin allografts and restoration of the skin's normal architecture without scarring and minimal contracture. When skin allografts from DA rats are transplanted into GFP transgenic Lewis recipients with a combination of AMD3100 and low-dose FK506 (AF) therapy, host-derived GFP-positive cells repopulate and/or regenerate cellular components of skin grafts including epidermis and hair follicles and the grafts become donor-host chimeric skin. Using AF combination therapy, burn wounds with skin allografts were healed by newly regenerated chimeric skin with epidermal appendages and pigmentation and without contracture in swine.


Subject(s)
Burns , Contracture , Rats , Animals , Swine , Bone Marrow Transplantation , Bone Marrow , Chimerism , Rats, Inbred Lew , Burns/surgery , Skin Transplantation , Allografts , Stem Cells , Graft Survival
16.
Pharmacol Biochem Behav ; 235: 173693, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104948

ABSTRACT

BACKGROUND: Periods of engaging in an alternative behavior diminishes behavioral control by stimuli occasioning alcohol use. This increase in relapse resistance with increasing recovery suggests that changing stimulus control over substance use may be a mechanism responsible for decreased relapse rates with longer recovery. However, the generality of this phenomenon to other drugs of abuse, including opioid self-administration, remains unclear. This study tests the generality of these findings with etonitazene to determine whether the shift in attention represents a behavioral process that generalizes from conditions we previously reported. METHODS: Five adult male Lewis rats were trained to respond on levers under two stimulus conditions; high-cost food (food FR150 and etonitazene FR5) and low-cost food (both food and etonitazene FR 5). Next, only the high-cost food stimulus (occasioning etonitazene responding) was presented for 20 sessions (Use Phase) followed by 9 sessions in which only the low-cost food stimulus (occasioning food responding) was presented (Recovery Phase). During the Recovery Phase, testing occurred during the first component of sessions 0, 1, 2, 4, and 8 when rats were re-exposed to the high-cost food stimulus. The number of food responses prior to completing the etonitazene response requirement during this stimulus exposure was the primary measure. RESULTS: Food responses during stimulus re-exposure increased significantly as a function of recovery sessions completed with a slope [95 % CI] of 2.49 responses/recovery session [0.16, 4.81]. The average number of etonitazene deliveries per use session was 32 ± 6.6 or an average daily dose of 48.8 ± 10.1 µg/kg. During Recovery Phase, etonitazene deliveries decreased to 2.4 ± 1 or 3.6 ± 1.5 µg/kg. CONCLUSION: The decrease in stimulus control observed for ethanol self-administration appears to generalize to opioid self-administration, indicating this change in stimulus control may play a general role in recovery.


Subject(s)
Opioid-Related Disorders , Reinforcement, Psychology , Rats , Male , Animals , Analgesics, Opioid , Rats, Inbred Lew , Ethanol , Opioid-Related Disorders/prevention & control , Recurrence , Conditioning, Operant
17.
Behav Brain Res ; 461: 114835, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38151185

ABSTRACT

Two inbred strains, Lewis (LEW) and Spontaneously Hypertensive Rats (SHR), are well-known for their contrasting behavior related to anxiety/emotionality. Studies with these two strains led to the discovery of the Quantitative Trait Loci (QTL) on chromosome 4 (Anxrr16). To better understand the influences of this genomic region, the congenic rat strain SLA16 (SHR.LEW-Anxrr16) was developed. SLA16 rats present higher hyperactivity/impulsivity, deficits in learning and memory, and lower basal blood pressure than the SHR strain, even though genetic differences between them are only in chromosome 4. Thus, the present study proposed the alpha-synuclein and the dopaminergic system as candidates to explain the differential behavior of SHR and SLA16 strains. To accomplish this, beyond the behavioral analysis, we performed (I) the Snca gene expression and (II) quantification of the alpha-synuclein protein in the hippocampus (HPC), prefrontal cortex (PFC), and striatum (STR) of SHR and SLA16 strains; (III) sequencing of the 3'UTR of the Snca gene; and (IV) evaluation of miRNA binding in the 3'UTR site. A Single Nucleotide Polymorphism (SNP) was identified in the 3'UTR of the Snca gene, which exhibited upregulation in the HPC of SHR compared to SLA16 females. Alpha-synuclein protein was higher in the HPC of SHR males compared to SLA16 males. The results of this work suggested that differences in alpha-synuclein HPC content could be influenced by miRNA regulation and associated with behavioral differences between SHR and SLA16 animals.


Subject(s)
MicroRNAs , alpha-Synuclein , Animals , Female , Male , Rats , 3' Untranslated Regions , alpha-Synuclein/genetics , Hippocampus , Rats, Inbred Lew , Rats, Inbred SHR
18.
Front Immunol ; 14: 1274982, 2023.
Article in English | MEDLINE | ID: mdl-38143768

ABSTRACT

Background: This study aimed to analyze the biomarkers that may reliably indicate rejection or tolerance and the mechanism that underlie the induction and maintenance of liver transplantation (LT) tolerance related to immunosuppressant or mesenchymal stem cells (MSCs). Methods: LT models of Lewis-Lewis and F344-Lewis rats were established. Lewis-Lewis rats model served as a control (Syn). F344-Lewis rats were treated with immunosuppressant alone (Allo+IS) or in combination with MSCs (Allo+IS+MSCs). Intrahepatic cell composition particularly immune cells was compared between the groups by single-cell sequencing. Analysis of subclusters, KEGG pathway analysis, and pseudotime trajectory analysis were performed to explore the potential immunoregulatory mechanisms of immunosuppressant alone or combined with MSCs. Results: Immunosuppressants alone or combined with MSCs increases the liver tolerance, to a certain extent. Single-cell sequencing identified intrahepatic cell composition signature, including cell subpopulations of B cells, cholangiocytes, endothelial cells, erythrocytes, hepatic stellate cells, hepatocytes, mononuclear phagocytes, neutrophils, T cells, and plasmacytoid dendritic cells. Immunosuppressant particularly its combination with MSCs altered the landscape of intrahepatic cells in transplanted livers, as well as gene expression patterns in immune cells. MSCs may be included in the differentiation of T cells, classical monocytes, and non-classical monocytes. Conclusion: These findings provided novel insights for better understanding the heterogeneity and biological functions of intrahepatic immune cells after LT treated by IS alone or in combination with MSCs. The identified markers of immune cells may serve as the immunotherapeutic targets for MSC treatment of liver transplant rejection.


Subject(s)
Liver Transplantation , Mesenchymal Stem Cells , Rats , Animals , Endothelial Cells , Rats, Inbred F344 , Rats, Inbred Lew , Immunosuppressive Agents/metabolism , Mesenchymal Stem Cells/metabolism , Single-Cell Analysis
19.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5603-5611, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114153

ABSTRACT

This study aims to investigate the effects of Blaps rynchopetera Fairmaire and/or cyclophosphamide on the proliferation and apoptosis of lung cancer cells and decipher the underlying mechanism. B. rynchopetera and cyclophosphamide-containing serum and blank serum were prepared from SD rats. Cell counting kit-8(CCK-8) assay was employed to examine the proliferation of lung cancer cell lines A549 and Lewis treated with corresponding agents. The Jin's formula method was used to evaluate the combined effect of the two drugs. According to the evaluation results, appropriate drug concentrations and lung cancer cell line were selected for subsequent experiments, which included control, B. rynchopetera, cyclophosphamide, B. rynchopetera + cyclophosphamide, and B. rynchopetera + Wnt/ß-catenin pathway agonist lithium chloride(LiCl) groups. Immunocytochemistry was employed to measure the expression of proliferation-related proteins in Lewis cells after drug interventions. Flow cytometry was employed to determine the cell cycle and apoptosis. The expression levels of proliferating cell nuclear antigen(PCNA), cyclinD1, B-cell lymphoma 2(Bcl-2), Bcl-2-assiocated X protein(Bax), Wnt1, and ß-catenin were determined by Western blot. The results showed that B. rynchopetera and/or cyclophosphamide significantly inhibited the proliferation of A549 and Lewis cells. Compared with B. rynchopetera alone, the combination increased the inhibition rate on cell proliferation. The combination of B. rynchopetera and cyclophosphamide demonstrated a synergistic effect according to Jin's formula-based evaluation. Compared with the control group, the B. rynchopetera, cyclophosphamide, and B. rynchopetera + cyclophosphamide groups showed increased proportion of Lewis cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the cyclophosphamide group, the combination group showed increased proportion of cells in G_0/G_1 phase, increased apoptosis rate, up-regulated expression of Bax, and down-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. Compared with the B. rynchopetera group, the B. rynchopetera + LiCl group had deceased proportion of cells in G_0/G_1 phase, decreased apoptosis rate, down-regulated expression of Bax, and up-regulated expression of PCNA, cyclinD1, Bcl-2, Wnt1, and ß-catenin. The results indicated that B. rynchopetera could inhibit the proliferation, arrest the cell cycle, and induce the apoptosis of lung cancer cells by inhibiting the Wnt/ß-catenin signaling pathway. Moreover, B. rynchopetera had a synergistic effect with cyclophosphamide.


Subject(s)
Lung Neoplasms , Wnt Signaling Pathway , Rats , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , beta Catenin/genetics , beta Catenin/metabolism , Proliferating Cell Nuclear Antigen , bcl-2-Associated X Protein/metabolism , Rats, Inbred Lew , Rats, Sprague-Dawley , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Proliferation , Cyclophosphamide , Cell Line, Tumor
20.
J Transl Med ; 21(1): 799, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946197

ABSTRACT

BACKGROUND: Heart transplantation (HTX) is the standard treatment for end-stage heart failure. However, reperfusion following an ischemic period can contribute to myocardial injury. Neutrophil infiltration, along with the subsequent release of tissue-degrading neutrophil elastase (NE)-related serine proteases and oxygen-derived radicals, is associated with adverse graft outcomes. The inhibition of cathepsin C (CatC) has been shown to block NE-related protease activation. We hypothesized that the CatC inhibitor BI-9740 improves graft function after HTX. METHODS: In a rat model of HTX, the recipient Lewis rats were orally administered with either a placebo (n = 12) or BI-9740 (n = 11, 20 mg/kg) once daily for 12 days. Donor hearts from untreated Lewis rats were explanted, preserved in a cardioplegic solution, and subsequently heterotopically implanted. In vivo left-ventricular (LV) graft function was assessed after 1 h of reperfusion. The proteolytic activity of neutrophil serine proteases was determined in bone marrow lysates from BI-9740-treated and control rats. Additionally, myocardial morphological changes were examined, and heart samples underwent immunohistochemistry and western blot analysis. RESULTS: The NE-related proteolytic activity in bone marrow cell lysates was markedly decreased in the BI-9740-treated rats compared to those of the placebo group. Histopathological lesions, elevated CatC and myeloperoxidase-positive cell infiltration, and nitrotyrosine immunoreactivity with an increased number of poly(ADP-ribose) polymerase (PARP)-1-positive cells were lowered in the hearts of animals treated with BI-9740 compared to placebo groups. Regarding the functional parameters of the implanted graft, improvements were observed in both systolic function (LV systolic pressure 110 ± 6 vs 74 ± 6 mmHg; dP/dtmax 2782 ± 149 vs 2076 ± 167 mmHg/s, LV developed pressure, at an intraventricular volume of 200 µl, p < 0.05) and diastolic function in the hearts of BI-9740 treated animals compared with those receiving the only placebo. Furthermore, the administration of BI-9740 resulted in a shorter graft re-beating time compared to the placebo group. However, this study did not provide evidence of DNA fragmentation, the generation of both superoxide anions and hydrogen peroxide, correlating with the absence of protein alterations related to apoptosis, as evidenced by western blot in grafts after HTX. CONCLUSIONS: We provided experimental evidence that pharmacological inhibition of CatC improves graft function following HTX in rats.


Subject(s)
Cysteine Proteases , Heart Transplantation , Rats , Animals , Humans , Heart Transplantation/methods , Cathepsin C , Tissue Donors , Rats, Inbred Lew , Heart , Reactive Oxygen Species , Serine Proteases
SELECTION OF CITATIONS
SEARCH DETAIL
...